On Cyclic Generalized WeaklyC-Contractions on Partial Metric Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cyclic Generalized Weakly C-Contractions on Partial Metric Spaces

The notion of partial metric space [1], represented by the abbreviation PMS, departs from the usual metric spaces due to removing the assumption of self-distance. In other words, in PMS self-distance needs not to be zero. This interesting distance function is defined by Matthews [1], as a generalization metric to study in computer science, in particular, to get a more efficient programs in comp...

متن کامل

Generalized multivalued $F$-weak contractions on complete metric spaces

In this paper,  we introduce the notion of  generalized multivalued  $F$- weak contraction and we prove some fixed point theorems related to introduced  contraction for multivalued mapping in complete metric spaces.  Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.

متن کامل

Generalized multivalued $F$-contractions on non-complete metric spaces

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...

متن کامل

Generalized multivalued $F$-contractions on complete metric spaces

In the present paper‎, ‎we introduce the concept of generalized multivalued $F$ -‎contraction mappings and give a fixed point result‎, ‎which is a proper‎ ‎generalization of some multivalued fixed point theorems including Nadler's‎.

متن کامل

Fixed point theory for cyclic generalized contractions in partial metric spaces

for all x, y Î X, where : R+ ® R+ is a nondecreasing function such that lim n→∞ φ n(t) = 0 for all t > 0. In 1994, Matthews [4] introduced the notion of a partial metric space and obtained a generalization of Banach’s fixed point theorem for partial metric spaces. Recently, Altun et al. [5] (see also Altun and Sadarangani [6]) gave some generalized versions of the fixed point theorem of Matthew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2013

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2013/831491